
TPC Reconstruction Update

Jonathan M. Paley

02/07/05

Indiana University

● Reconstruction is based on E910 reconstruction algorithm,
described in Xihong Yang's thesis.

● General overview:

● Begin with raw data: TPCDigit class has the following data
members: (padColumn, padRow, bucket, ADC).

● TPCR2DClusters are formed in the x-y (column,bucket) plane
from connected digits. 2DClusters are formed in each padRow.

● TPCRHits are formed from the 2D clusters using the center-of-
gravity (weighted by ADC value) of each cluster.

● TPCRTracks are formed from TPCRHits.

● TPCRVertices are formed from TPCRTracks.

TPCR2DCluster and TPCR2DClusterFind

● TPCR2DCluster: class that holds list of TPCDigits, as well as some
other useful info:

● max., min. bucket
● max., min. pad column
● sum of ADC values
● avg. (x,y)
● rms (x,y).

● TPCR2DClusterFind: JobCModule class whose job it is to find
2DClusters from raw TPCDigits:

● sorts raw TPCDigits by pad row
● forms 2DClusters from digits that are connected either vertically
or horizontally (but not diagonally)
● calculates all of the member variables of each 2DCluster

peak at ~8 buckets

On average, there
are about 8 buckets
in each 2DCluster.

The vertical width of a
2DCluster is about
0.7 “cm” (bucket-to-
distance conversion
assumes
v

D
 = 5.45 cm/us

On average, there
are about 2 pads
in each 2DCluster.

The horizontal width of
a 2DCluster is about
0.3 cm.

TPCRHit and TPCRHitFind

● TPCRHit: placeholder class for final hit(s) that will be formed from
2DClusters. Currently only takes the avg. x and y positions of each
2DCluster.

● TPCRHitFind: JobCModule class whose job will be to find
individual hits from the 2DClusters.

TPCRTrack and TPCRTrackFind
● TPCRTrack: class that holds list of TPCRHits, as well as:

● track fit parameters (rho, d, phi, dy/ds, y0), their uncertainties and
their correlations
● ID (unique number, used mostly for debugging)
● fit status (success or fail), goodness-of-fit (g.o.f.) ~ chi2
● helicity (charge)
● two matrices, used for fitting

● TPCRTrackFind: JobCModule class whose job it is to find
tracks from TPCRHits:

● track seeds are formed using a “follow-your-nose” approach, where
a collection of hits is formed by searching only in the z-direction and
picking up nearest-neighbor hits
● looping until we find no more tracks:

● take the longest list of unused hits, fit them to a helix
● go back to look for bad hits (and remove them)
● look for any “acceptable” unused hits, add them to the track
● check again for bad hits (and remove them)

TPCRTrack and TPCRTrackFind (cont.)

● “Bad” hit fails cut on residual.
● “Acceptable” hit passes cuts on:

● distance away from nearest track hit (cuts on both longitudinal
and transverse distance)
● change in g.o.f. parameter is less than max. allowed residual

● Next, we look for tracks to merge
● merge two tracks if they intersect inside the TPC volume, and if
the g.o.f. of the merged track is less than the sum of the g.o.f.'s
of the two single tracks.

● Finally, we look for any remaining “acceptable” unused hits that
could be added to any of our tracks.

TPCRVertex and TPCRVertexFind

● TPCRVertex: class that holds list of TPCRTracks associated with the
vertex, as well as the position of the vertex.

● TPCRVertexFind: JobCModule class whose job it is to find a vertex
from TPCRTracks:

● algorithm for calculating vertex position assumes the vertex is
outside the TPC volume. This is because with no magnetfic field,
the calculation is linear, and all we have to do is matrix inversion.

● the collection of tracks that form a vertex is initally formed from a
list of two-track intersections that fall within a variable sized “box”.

