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Abstract

We study the usage of various definition of sampling fractions in under-
standing electron shower shapes in a full plate version of the DO End Cap
electromagnetic calorimeter. We show that the sampling fractions obtained
by the conventional definition (I) of Average (Live energy in layer)/ aver-
age(deposited energy in layer) will not give the best energy resolution for the
calorimeter. The teason for this is shown to be the presence of layer by layer
correlations in an electromagnetic shower. The best resolution is obtained by
minimizing the deviation from the total input energy using a least squares
algorithm. The “ sampling fractions” obtained by this method (II) are shown
to give the best resolution for overall energy. Surprisingly, it is established
that the sampling fractions (II) cannot be used to predict the layer by layer
energies. This effect is again a result of the correlations.

Sampling fraction definition method I

We define the inverse sampling fraction g% in method I as the average de-
posited energy D* in layer k divided by the average live energy L* in liquid
argon in layer k , averaged over a sample of electrons of fixed incident en-
ergy. The deposited energy includes energy in Uranium plates, energy in
dead material and the liquid argon gaps belonging to that layer.

=< D'> [<LF> _ (1)

where <> denotes average over events. Using this definition, we can
- calculate the total deposited energy event by event and also the layer by
layer deposited energy as a function of the observed live energies.



Momentum EM1 EM2 EM3 EM4 FH1

i ni I pi BY

10.0 12.2 12.3 16.1 19.3 139.6
pY/MIPY | pi/MIP? | y3/MIP3 | u}/MIP* | uf/MIP®

10.0 0.39 1.08 1.43 1.56 8.1

B 13 K} I B}

100.0 10.4 11.2 15.0 18.4 59.9
pr/MIPY | p}/MIPY | u3/MIP® | p}/MIP* | p}/MIP®

100.0 0.34 0.98 1.34 1.49 3.47

MIP 31.05 11.4 11.23 12.34 17.24

Table 1: Inverse sampling fractions method I for 10 Gev/c and 100 GeV/c
electrons. Also shown are the inverse sampling fractions estimated using
Minimum Ionizing particles (MIP) and the ratio of Method I/MIP

Dt = 3 b1 2

and the layer by layer deposited energies are

Dy, = utL* (3)
Table (1) shows the inverse sampling fractions u} for the 4 EM layers
and the lst layer of the Fine Hadronic calorimeter for the DO end caps.

The numbers are obtained from a full plate simulation of-the D0 End cap
calorimeter using Geant 3.11 for 10 GeV/c and 100 GeV/c electrons.

It can be seen that the inverse sampling fraction increases as the shower
proceeds. In particular, the ratio of the u; to the inverse sampling fraction
determined using minimum jonizing particles shows this effect in the second
row of table (1)). This is due to mean free path of the average particle in the
shower becoming comparable to the Uranium plate thickness, resulting in an
increasing amount of {racks terminating in Uranium and not making it into
the argon. The effect is particluarly noticable in FH1 where the shower is in
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the process of terminating. Using, u, we calculate the D** and also indi-
vidual D*. Figure (1) is the total energy D** calculated using this method.
The overall energy resolution in this method is roughly 40%/ \/(E) Figure

(2) shows the difference between the calculated event by event quantities D*
using method I and the Monte Carlo measured D* for the various layers.

Sampling fraction definition method IT

In order to optimize the resolution, it is usual to minimize the sum of squares
of the difference between the calculated total energy and the input total
energy event by event. We minimize 5? defined as

S'= T (0 - byl (4)

events

To minimize,

ds? tot A rhyri _

S =2 X (D% - Y LML = 0 (5)

d“'." events ]
Averaging over the number of events, this yields

<DL >= 3"y < LM > (6)
A

with the matrix M?* =< LiL* > , we can solve for ujr

B =X < DL > (MY )

Table( 2) shows the inverse “sampling fractions” u¥; for the 4 EM layers
and the 1st layer of the Fine Hadronic calorimeter for the DO end caps. The
numbers are significantly different from that in table (1) especially in layers
1 and 5. The numbers are obtained from a full plate simulation of the D0
End cap calorimeter using Geant 3.11 for 100 GeV/c electrons and invoking
the above minimization algorithm.

Figure (3) is the total energy D** calculated using gy .



Momentum | EM1 | EM2 | EM3 | EM4 | FH1
sir | wir | Bl | el | Bh

10.0 207 | 146 | 14.8 | 15.3 | 26.8
#}r #}1 ﬂ?t #}r ﬂfr
100.0 218 | 148 | 14.7 | 15.6 | 29.1

Table 2: Inverse “sampling fractions” method II for 10 GeV /c and 100 GeV/c
electrons '

The overall energy resolution in this method is better than method I by
almost a factor of 2 and is equal to 17%/\/EE).

Since D't = ¥, u¥ L*, the tendency is to assume that the deposited
energy in the k™ layer is given by D* = u}, L* . It is the purpose of this
paper to show that this assumption is false.

Figure (4) shows the difference between the calculated event by event
quantities D* using method I1 and the Monte Carlo measured D* for the
various layers. Thete is seen to be a major discrepancy between the average
values and the calculated values. We explain mathematically the origin of
this discrepancy in the following section.

Depositied energy layer by layer using least squares technique.
Method III

The flaw in the above argument is to assume that

D* = pj I* (8)

This equation is not general enough. The most general linear equation
one can write connecting a vector L* and another vector D* is

D* = > AMLI _ (9)
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where the tensor A* is in general non-diagonal. In the special case where
it is diagonal, equation 8 results. In order to determine A, since D' are known
from Monte Carlo ,we minimize

T = Y YM(D'- ALY (10)

evenis i
yielding
o, S (D -3 AYIHb =0 (11)
dAsk events E]
Averaging over events, yields
<DL >=Y AY < LI > (12)
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This then yields A upon inversion
AY =3 <DL > (MY (13)
b

We now show that equation (12) implies equation (6). This is demon-
strated by summing equation 12 over the subscript a.

<DL >=Y Y A< L >=< D"} > (14)
a a ."
But equation 6 implies that

< DL >= Y pi < LILP > ' (15)
7

This must imply that
Wiy = DA% (19)
i.e. both Method II and method III find the same minimum with the
identification made in equation (16). Since the two minima are the same, it
can now be seen that the energies D* are not obtained by u};L* but are in
fact obtained by equation (9).(QED). The “inverse sampling fractions ™ u%
cannot be used to compute layer by layer energies. In order to do this one
needs the full tensor A.



| | EM1[EM2] EM3 | EM4 [FH1)
EM1| 132 | ~0.6 ] —0.02] —0.003 | L.l
EM2| 90 | 9.1 |-0.03| —0.06 | 1.3
EM3| —48| 7.6 | 13.9 | —1.0 | 21
EM4| 21 | -18| 1.0 | 157 | -0.8
EM5| 23 | 03 | —0.1| 09 | 254
SUM | 21.8 | 14.6 | 14.7 | 15.6 | 20.1

Table 3: The A tensor from method III for 100 GeV /c electrons

Table (3) gives the A tensor determined by the Least Squares Minimiza-
tion . The sum of the columns of this tensor gives the same values as p;7 as
demanded by the mathematics.

Figure (5) shows the difference in the deposited cell by cell energies D* -
computed using equation (9) and the Monte Carlo measured energies D*. It
can be seen that these predictions are far better than method II and have
smaller errors than method I.

Conclusion

Table (4) summarizes the numerical results for 100 Gev/c and 10 GeV/c
electrons.

To conclude, we have demonstrated that the least squares “inverse sam-
pling fractions” cannot be used to compute cell by cell energies in the presence
of correlations. This has implications when trying to compare Monte Carlo
shower profiles with test beam data. In the former, both the deposited en-
ergy and the live energy is available. In the latter only the live energies are
known. This paper shows that if an attempt is made to compare deposited
energies between test beam data and Monte Carlo, one must use the full A
tensor to infer the deposited energies. Otherwise an error is made in the
shower profile which is as large as 100% in layer 1 for 100 GeV/c electrons.

Method T uses no information from shower correlations and produces
a result which has a factor of 2 higher error than methods II and III for
total energies. This must imply that additional information is obtained in



Method | < D** > | o( D) Deviation & Sigma deviation
EM1 EM2 EM3 EM4 FH1
T 9.78 0813 | 51E~3 | 285E—-2 [ 30E—2 | 14E -2 | —27E — 2
1 0.191 0.2200 0.533 0.240 0.259
I 10.01 | 0.588 0.4885 0.3794 ~0.4418 | —0.2255 | —0.1898
0.3375 0.2581 0.4809 0.2067 0.0931
< IL*> 5.7T19E — 2 0.156 0.376 6.01E — 2 [ 0.201F — 2
< D* > 0.699 1.90 6.02 1.15 0.233
Y%error using methodl I 70.0 20.0 -7.3 —19.6 —81.5
IIT 10.01 0.588 | —0.0004 | --0.0014 0.0014 0.0034 0.0018
0.1899 | 0.1792 0.3951 0.1883 0.0506
T 100.0 | 4095 | -06E—3] 1.1E—-3 | 1.2E—3 | 0.7E—3 | 13E -3
0.407 0.663 2.548 1.431 0.827
Ir 99.97 1.752 2.474 3.071 -1.302 —3.247 —1.144
1.049 0.952 2.532 0.952 0.406
< L*> 0.225 0.905 4.26 1.15 3.7TE - 2
< D*> 2.33. 10.14 64.05 21.2 2.24
Yeerror using methodll 106. 30.3 —2.0 -15.3 —51.1
I 99.96 | 1.753 | —1.3E—3 | —18E—3| —20E -2 | —93E —3| 20F —3
0.375 0.423 1.380 0.851 0.300

Table 4: Comparison summary of three methods for 10 Gev/c and 100 Gev/ c
clectrons. Deviations here are defined as the predicted value - Monte Carlo

value




using cell by cell correlations. It is perhaps worth pushing this question of
correlations to its absolute limit and ask what the maximum attainable EM
energy resolution is in a D0 type calorimeter, if we had digitized information
for all argon gaps independently. This work is progressing.

References
(1] User’s Guide to GEANT 3.11, R.Brun et al, CERN DD-EE-84-1



Monte Carlo e— 100 GeV Method |

: ID 2

20 - ' Entries 419
i _ Mean 100.0
I ﬂ RMS 4.095

175 |-

15 |- -

12.5 - | | J

10 | i

75 b AP

5 f—
2.5
. L. =
0 llllllllll.!.“illrlllr)lllllllll]l!lll””l[”lll
80 85 0 95 100 105 110 115 120

Full Energy deposit calculated by algorithm | (GeV)

Figure 1: Total energy of electron showers calculated using method I
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Figure 2: Difference in energy (Monte carlo -predicted ) layer by layer using
method I
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Figure 3: Total energy of electron showers calculated using method II
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Figure 4: Difference in calculated and measured layer by layers using method
I
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Figure 5: Difference in calculated and measured layer by layers using method

III
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