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What's in this talk

Overview of the MIPP software
*EFramework and basic services

*Quick guide for how to get started
*Reconstruction status

Thoughts on software and analysis needs for

upgrade will be sprinkled throughout




Overview: Data format

MIPP uses two data formats

Raw format
Used by DAQ

Optimized for fast instantaneous write speeds
Defined 1in Mipplo package

Block New detector systems

* Fixed size prefix: ID/Version/Block size ;i need to define
e Data block

format, packing, and

) unpacking code in Mipplo package
ROOT format

Used by offline

More flexible format. Allows streaming of any user-defined
objects

Defined in EDMEventDataModel package

[ think all this code is ready for reused w/o modification



Online/Offline interface: Online monitoring

OnlineMonitoring

* The “onmon” program runs in the control room and displays detector
status and data quality to shift workers. (package: OnlineMonitoring)
* Will require some rethinking and work for upgrade
> Data passed from DAQ to onmon. Currently done through NFS
mounted disk. Need something better?
~ Analysis and GUI merged into single program. Will want to separate
these onto their own threads
~ Analysis performed will need to be streamlined to keep up
> Will want to create more “spill summary”-type plots

Will need to identify a person to take this on



Online/Offline interface: Online monitoring

* It should be possible to reconstruct and display data in roughly real
time in the control room.

* This “ExpressLine” processing worked at only a very low level in
MIPP-I

* Now we have a pretty reliable reconstruction which could run in the
control room and produce summary output

This will need a name assigned for the upgrade



Getting started: Finding information

All software related information posted here:
http://ppd.fnal.gov/experiments/e907/OftlineSoftware/

Offline installation guide:
http://ppd.tnal.gov/experiments/e907/OfflineSoftware/InstallationGuide/

Offline user's manual:

http://enricol.physics.indiana.edu/mipp/OfflineUsersManual/

To get access to software you will need an FNAL kerberos principle or an
SSH key



Getting started: External packages

Detailed 1n the Installation guide and users' manual. MIPP uses:
* C++ almost exclusively (MC 1s GEANT3 based)

* Software Release Tools (SRT) for code release management and building
http://runiicomputing.fnal.gov/cmgt/SoftRelTools-Manual/

®* (CVS for version control http://ximbiot.com/cvs/manual/

* ROOT http://root.cern.ch/

* Xerces C++ (XML parser) http://xml.apache.org/xerces-c/

¢ Postgresql (Database) http://www.postgresql.org/

¢ CLHEP http://proj-clhep.web.cern.ch/proj-clhep/
¢ CERNLIB/GEANT?3 http://cernlib.web.cern.ch/cernlib/

Throughout development process goal has been to balance minimization of
number of external packages while avoiding reinvention



Most useful utilities

Several usetul utilities to help get started

psql: The database server. To find runs taken by MIPP-I
% psql runs
runs=> select * from runs where momentum>40 and momentum<60

dumpRunConfig: Prints summary of run
% dumpRunConfig 12340

edm dump: Prints event data structure for an event

% edm_dump -e 10 file.root



Using the code: JobControl

Users interface to the event data through “anamipp” program defined
in JobControl package

anamipp 1s extended and configured at run time using XML files
Example:

<jobdoc> COnfiguratiOH files
<xmlfile> /
TPCReco.xml TrkRBase.xml SPSegAssn.xml SPFit.xml SPTrkBuilder.xml VtxDAFit.xml
</xmlfile>
<link> L . .
Minuit TPCResCor NumericalMethods Swimmer SPFit VertexReco 4 Addltlonal hbrarles
</link>

<job name="Tracking"> Analysis modules to run
<node sequence="TPCReco" filter="off"/> /

<node sequence="TrkRBase" filter="off"/>

<node module="SPTrkBuilder" config="default" reco="1" ana="0" filter="off"/>

<node module="VtxDAFit" config="default" reco="1" ana="0" filter="off"/>

</job>

</jobdoc>



Analysis unit is the “JobCModule”

Well described in user's manual
User implements “Reco” and/or “Ana” methods.
Reco: read/write access to event

Ana: read only access to event
JobCResult VtxDAFit::Reco(EDMEventHandle& evt)

(
unsigned int 1; .
; \ Event data object

int run = evt.Header().Run();
int evn = evt.Header().Event();
// Pull the beam track out...

try {
evt.Reco().Get(fBeamTrkDir.c_str(), gsBeamTrack); I‘esults

}

Pulling out previous reconstruction
PR g p

// Finally, store the vertices in the event

const char* dir = "./vtxdafit";

if (evt.Reco().GetFolder(dir)==0) evt.Reco().MakeFolder(dir);

for (1=0; i<vtxList.size(); ++1) { . .
evt.Reco().Put(vtxList[i],dir); «— Stor 1ng new reconstruction reSUItS

}
return JobCModule::kPassed;



Status of the MIPP Reconstruction Software

Since completing our running in February of this year, we have been focused
on completing the reconstruction algorithms, alignment, and calibration of
the detector elements. This task is divided into two essential elements:
tracking and particle ID.

The tracking is performed by first forming track segments in the TPC and in
the wire chambers. These segments are then joined to form global tracks and
fit using detailed maps of the JGG and Rosie fields. The track lists are
searched for vertex candidates. We are working on the code to refit tracks
using a common vertex constraint.

The tracks are then associated with particle ID information from the TPC
(dE/dx), TOF, CKOV, and RICH counters. Tracks are also matched to the

calorimeters



TPC Tracking

Track finding and fitting in the TPC follows this basic outline:

[ 1] Cluster finding: In each slice of pads along the beam direction, clusters of hit
voxels are formed

[2] Cluster fitting: These clusters are searched for significant peaks and fit to models
of a Gaussians 1n the x direction and Gamma functions in the drift direction.

[3] Distortion corrections: The position of the resulting hits are calculated by drifting
electrons through a map of the Jolly Green Giant B field backward in time from the
pad plane up to the measured drift time. These positions differ by as much as 10 cm
from a straight vertical drift

[4] Residual distortion corrections.: After correcting for all known effects, we still
observe biases 1n the track fit residuals as large as 1 cm in some regions of the TPC
volume. These are mapped as a function of volume in the TPC and removed “by
hand”. The data used for these corrections requires another iteration as our track
reconstruction and vertexing algorithms have improved.

[5] Helix fit: The hits in the TPC are collected into tracks and fit to a helix model
The following slides document the progress on each of these steps.
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TPC Distortion Corrections 11
After correcting for all known effects, systematic

biases in the track fit residuals are still seen at the

few mm level

These are removed by mapping out the track fit
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The plots at the right show the average track fit

residuals prior to the final fine adjustments (blue)"é“ 0.51~
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Alignment Status

We have gone through a lot of effort to

make sure that

Chamber wire planes are aligned

Chamber z-locations in geometry are consistent
with data

Relative B-field strengths of JGG and Rosie are

matched
Z-locations of B-field maps are consistent wit\h

data

MIPP//



Alignment Status (cont)

We have aligned EMCal and RICH to
chambers

TPC alignment is work in progress
Field on studies are complicated by large
distortions
Field off data is scarce




Wire Chamber Alignment

Chambers are not fully understood: correlations
with momentum exist at ~0.1 wire spacing
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Wire chamber alignment

and calibration

Completed TO and wire-by-wire timing
calibration of drift chambers
Completed alignment of wire chambers
over the summer.

Difficult job as there were several
discrepancies with survey numbers
With these alignments and calibrations
complete, ready to make use of timing
information during tracking

Plots at right show residual vs. time for
two of the 28 wire planes in the
experiment. Once the time-to-position
conversion 1s parameterized it can be
used in fits

At the moment, fit TPC+wire chamber
information using just wire spacing as
resolution
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XpitX e (CM)

Y fits depend on modeling shaped time with
Gamma function

TPC Alignment

TPC appears to be rotated by ~2 mrad in xz-plane

Plots below are from global fits of field off data
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Global Tracking Status

Track fits are currently done through

template method
Very fast, requires few swims through B-field
Not reliable for large-angle tracks — use TMinuit
for those (work in progress)

Current implementation of global track
finding algorithm is done
Fit TPC tracks

Match TPC tracks to chamber tracks
Save unused chamber-only tracks




Vertex Reconstruction

Vertex finding is done through deterministic
annealing filter (DAF)

Vertex-constrained fit is then done on
identified vertices

We incorrectly reconstruct target z-position
Possible reasons are mis-alignment, B-field
maps, TPC distortion corrections
The most important problem to be solved ASAP
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Kalman Track and Vertex Fitting

* Advantage of Kalman Filter: take into account multiple scatter and
dE/dx 1n track fits.

®* We have been using the RecPack toolkit (used by Nomad, HARP,
MICE, etc.)

— Pros:

* Convenience of using off-the-shelf package, don't have to
reinvent the wheel.

®* We had relatively rapid start up with this package.

— Cons:

* Still under active development.

* [ ack of documentation.




Kalman Status

* At this point, we can:

— Refit TPC helix tracks using the field map
— Refit beam tracks

— Form vertices near the target

®* Need to:

— Move to standard RecPack release

— Figure out how to swim TPC tracks downstream and pick up DC
hits

— Find secondary vertices

— Add more geometry (eg, ToF wall)



Particle Identification

As tracking algorithms converging, it 1s possible to calibrate the
responses of the particle ID detectors and the ECAL and HCAL.

PAC has seen the dE/dx plot in the TPC. Gain calibration there is done,

major gains to be made there are in momentum resolution (fine tuning of
TPC distortion corrections, vertex constrained fits, and wire times)

Here I add some plots from the TOF and DCKOV, and RICH counters

The calorimeter calibration was presented



ADC

DCKOV

Calibration of inner two mirrors complete. These have the highest statistics. Extending

calibration from these two central mirrors to the side mirrors will require much higher

statistics available after our next reconstruction pass at the data

Plots below show the correlation of the mirror ADC value with the predicted light fraction

predicted from the track fit. Center plot shows the (slight) correlation with ADC on the

predicted path length through the mirror. Right most plot shows the ADC spectrum corrected

for light-sharing and path length. #pe's found from (mean/sigma)”2

ADC/F vs. path length
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Time of flight

Able to associate tracks to hit ToF
bars.

Top right plot shows proton band
separate from v=c tracks.

Calibration very sensitive to
temperature variations. Calibration
procedure to remove these drifts
has been worked out. (See bottom
plot) and work 1s continuing on the
remaining corrections (trigger time
offsets, time walk, speed of light in
bar, etc.). For bars on wings will
require large statistics resulting
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RICH Reconstruction

Sin Man (Sharon) Seun
Dec 9, 2006

* Reconstruction Algorithm

* RICH Reconstruction Performance for p/K
only

MC p-C run: 10,000 events



Reconstruction Algorithm
* Get global track Info

— momentum & ring center
* Analysis
- Given a momentum, define signal region: smallest r, to largest r,.

If proton is below threshold, r, = 0

— For each particle hypothesis j, compute the expected number of
photoelectrons 7, for every PMT i 1n the signal region and

calculate Log(likelthood) L,

— Fit ring with reconstructed particle ID radius

* For all good fits, eliminate overlapping digits

— Redo likelihood calculation



Tuning expected light in

RICH (Nick Graf)

PMT occupancy as function of

distance from ring center
Red: Calculation
Black: Data
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True p Identification

True P identification Efficiency of p identification vs
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True K Identification

Efficiency of K identification vs

momentum
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Monte Carlo Status

GEANT side is nearly complete. Need to
Configure target location, etc based on real run

Compress calorimeter hits
Add Scinteraction counter to active volumes
Perhaps a few more little technical details

Particle production is simulated outside of

GEAN
Fluka, dpmjet are ready to go

Within 2-3 weeks could start generating

GEANT hits

MIPP.———



Monte Carlo Status (cont)

Digitization of idealized hits is done in C++

JobCModule's

Wire chambers are nearly complete
TPC is almost there

RICH is being tuned
Ckov/TOF/Calo's need work

Making MC resemble our data is not trivial,
needs a dedicated effort

\‘




Thoughts on upgrade

* Focus of offline needs to be analysis of MIPP-I data.

* Expect to start data processing in ~2 weeks. DST's available ~1
month following

* Once that processing has started, focus will shift toward MC
tuning

* Places where people can get plugged in:
* Kalman Reconstruction
* MC tuning
* Data cross-checks (invariant mass studies



Thoughts on upgrade

Thinking ahead to the upgrade we will need

[1] Revisit and revise the online monitoring

[2] Identify 1-2 people to form an alignment group
- Need better thought out plan for alignment. For example,
magnet off running has been extremely valuable and not
plentiful enough in MIPP I analysis
- Need better coordination with survey crews

[3] Identify 1-2 people to form TPC analysis group
- Begin working with Mike Hefner to develop magboltz
stimulation of distortion effects
- Need better thought out plan for calibration of distortion

effects.



Thoughts on upgrade

Thinking ahead to the upgrade we will need

[4] Need calibration plan
TOF/DCKOV 1n particular are difficult to calibrate with
data collected in MIPP-I
[5] Batch processing. We cannot count on LLNL farms and the
people managing the batch processing are leaving. Need to
identify a batch manager and possibly more computing
resources at or away from FNAL
[6] Need to continue reconstruction effort, especially in directions
required by new detector systems
[7] Need data handling plan: 1 spill ~= 12,000 events ~= 2+ of
what we now call a sub-run. Long subruns have been
problematic for us due to data size.



